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Abstract 

An expanding element is obtained by adding virtual nodes along the perimeter of the 

traditional discontinuous element. There are two kinds of shape functions in the 

expanding element: (i) the raw shape function, i.e. shape function of the original 

discontinuous element, involving only inner nodes; (ii) the fine shape function, which 

involves all the nodes including inner nodes and the newly added virtual nodes. The 

polynomial order of fine shape functions of the expanding elements increases by two 

compared with their corresponding raw shape functions. In this paper, we apply the 

expanding element interpolation method to analysis of thin-walled structures. An 

adaptive element subdivision method for evaluating nearly singular integrals is 

proposed. Numerical results have demonstrated that our method has high level of 

accuracy and is able to analyze very slender structures with the aspect ratio up to 1e6. 

Keywords: thin-walled structures; nearly singular integrals; expanding element 

interpolation method; boundary element method 

1. Introduction 

Thin-walled structures, such as various thin films in electronic devices, sensors and 

actuators in smart materials, and coatings on machine components, widely appear in 

engineering application. Accurate and efficient numerical analysis of these structures 

has been a challenging task. The finite element method (FEM) is a successful tool to 



analyze the thin-walled structures using plate and shell elements in most applications. 

But the plate and shell elements are based on plate and shell theories in which many 

assumptions about the geometry, loading and deformation of structure are introduced. 

While using brick elements in the FEM, large number of elements are required due to 

the aspect ratio limitations of the elements. 

The boundary element method (BEM) [1-8] is a more suitable method for 

numerical analysis of thin-walled structures. This is because, in BEM analysis, only 

the surface of a body needs to be discretized and accurate results for stress can be 

obtained without shell assumption. This is particularly beneficial when dealing with 

connections between thin-walled parts and bulky blocks within a complicated 

structure. In addition, the trial functions in the FEM formulation must be at least 

C
0
-continuous which is not required in the BEM. This feature is significantly 

important for the BEM to be superior to the FEM. However, how to make full use of 

this feature has been a long-standing issue in the BEM community [9], because the 

continuous and discontinuous elements each have their own advantages and 

disadvantages. 

When using the discontinuous elements, many advantages are provided, for 

example, simplifying the assembly of the system equations, the mesh generation and 

the computation of the ‘free’ terms appearing in the integral equations. But for the 

same level of accuracy, the number of degrees of freedom is larger, thus more CPU 

time and memory capacity are required. For the continuous elements, the C
0
 

continuity can be guaranteed, but not the C
1
 continuity which is necessary for 

hypersingular integral equation [10, 11]. In addition, the corner problems [12] must be 

considered when using the continuous elements. 

To unify the continuous and discontinuous elements, a new expanding element is 

presented. The expanding element is achieved by adding virtual nodes along the 

perimeter of the traditional discontinuous element. The inner nodes of discontinuous 

element are called as source nodes. The boundary integral equation is collocated at the 

source node, only. There are two kinds of shape functions in the expanding element: 

the raw shape function and the fine shape function. The raw shape functions are used 



to build relationship between the virtual nodes and source nodes. While the fine shape 

functions are used for interpolating boundary field variables. With the expanding 

element, both continuous and discontinuous fields on the domain boundary can be 

accurately approximated, and the interpolation accuracy increases by two orders 

compared with the original discontinuous element. 

In this paper, we apply the expanding element interpolation method to analyze 

thin-walled structures. Accurate and efficient evaluation of nearly singular integrals is 

of crucial importance for solving thin structures problems. Various methods have been 

proposed to cope with nearly singular integrals, such as element subdivision method 

[13, 14], analytical and semi-analytical method [15], exponential transformation [16, 

17], distance transformation [18, 19] and sinh transformation [20-22]. Among these 

methods, the element subdivision method is a more stable and universal method. An 

adaptive element subdivision method for evaluating nearly singular integrals is 

proposed in this paper. In this method, the integration element is divided into two 

equal sub-elements according to the location of the source node, and it is performed in 

local coordinate system of the element. With the proposed method, the nearly singular 

integrals can be accurately evaluated even when the source node is very close to the 

integration element. Furthermore, this method is independent of the problem to be 

solved. 

This paper is organized as follows. Section 2 presents the expanding element 

interpolation method. In section 3, the assembly of the system of linear algebraic 

equations and the nearly singular integration scheme are described. Numerical 

examples are given in Section 4. The paper ends with conclusions in Section 5. 

2. The expanding element interpolation method 

The expanding element interpolation method is introduced in detail in this 

section.  

2.1 The expanding elements 

The expanding element is obtained by collocating virtual nodes along the 

perimeter of the traditional discontinuous element as shown in Fig. 1. There are two 



kinds of shape functions in the expanding element: raw shape function and fine shape 

function. The raw shape function is the shape function of the original discontinuous 

element. The fine shape function is constructed by the virtual nodes and the inner 

nodes of the discontinuous element. The raw shape functions and fine shape functions 

of the expanding constant, linear and quadratic element are as follows: 

 

Fig. 1. (a) Expanding constant element; (b)expanding linear element; (c) expanding quadratic 

element. 
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where N with the superscripts r and f refer to the raw and fine shape functions of the 

expanding elements, respectively.  

The fine shape functions are used for interpolating boundary field variables. From 

Eqs. (1)-(3), it can be seen that the interpolation accuracy increases by two orders 

compared with the original discontinuous element. The relationships between the 

virtual nodes and source nodes are built up by the raw shape functions. 

2.2 New interpolation method by the expanding element 

 

Fig. 2. Example of new interpolation method by the expanding linear elements. 

Because virtual nodes are not used as source nodes, how to get the nodal values 

of virtual nodes is very crucial for the implementation of the new method. In the 



following example, the calculation of values at virtual nodes is described in detail.  

Fig. 2 shows a rectangular domain discretized by 6 expanding linear elements 

with 12 source nodes and 10 virtual nodes. These elements are used to interpolate 

displacements and tractions on the boundary. u  and t  in Fig. 2 represent the 

known displacements and tractions, respectively. 

For interpolating known boundary variables with the expanding elements, the 

nodal values of virtual nodes equal to the corresponding boundary conditions. For 

instance, 
4 4u u  in Fig. 2. Thus, more accurate boundary conditions can be imposed. 

This is particularly beneficial when dealing with thin-walled structures with short 

edges. 

When interpolating unknown boundary variables, the nodal values of virtual 

nodes equal to the average of extrapolation values by the raw shape functions of their 

connecting elements. Taking t4 in Fig. 2 for example, 

4 2 2 3 3 5 5 6 6

1
(1) (1) ( 1) ( 1)

2

r r r rN N N N       t t t t t            (4) 

where 
2

rN , 
3

rN  
5

rN  and 
6

rN  are the raw shape functions of the two expanding 

linear elements on the top edge. With this scheme, the interelement continuity can be 

guaranteed. 

In order to accurately approximate the discontinuous fields (tractions) on the 

domain boundary, two virtual nodes are collocated at a vertex geometrically shared by 

two adjacent elements, one virtual node for one element, respectively. As shown in 

Fig. 2, 

7 7 8 8,   t t t t                               (5) 

11 11 12 12,   t t t t                             (6) 

With this method, the discontinuity of the boundary variables can also be accurately 

maintained. For continuous fields (displacements), the following scheme is adopt: 

7 8 7 u u u                               (7) 

11 12 9 9 10 10 13 13 14 14

1
(1) (1) ( 1) ( 1)

2

r r r rN N N N        u u u u u u .         (8) 



The boundary variables are interpolated by the fine shape functions of expanding 

elements. The displacements and tractions on the right edge in Fig. 2 are 

8 8 9 9 10 10 11 11

f f f fN N N N   u u u u u                   (9) 

8 8 9 9 10 10 11 11

f f f fN N N N   t t t t t                    (10) 

Substituting Eqs. (5)-(8) into Eqs. (9) and (10), the following expressions can be 

obtained. 
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8 8 9 9 10 10 11 11

f f f fN N N N   t t t t t                    (12) 

 In the expanding element, the nodal values of virtual nodes are not independent 

variables. They are either directly used when the boundary condition at the node is 

known, or interpolated by raw shape functions of their connecting elements. The 

boundary integral equations are collocated at source nodes, and the size of the final 

system of linear equations equals to the total number of degrees of freedom counted 

for source nodes, only. By arranging two virtual nodes at a vertex geometrically 

shared by two adjacent elements, both continuous and discontinuous fields on the 

domain boundary can be accurately approximated. 

3. Solution of boundary integral equations with the expanding element 

interpolation method 

3.1 Assembly of the system of linear algebraic equations 

The following boundary integral equation (BIE) for 2D elastostatic problem is 

considered: 

* *( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( )ij j ij j ij jc P u P u P Q t Q d Q t P Q u Q d Q
 

             (13) 

where P and Q are the source and field node, respectively. cij(P) is a coefficient matrix 

depending on the smoothness of the boundary Γ at the source node P. uj and tj 

represent the displacement and traction fields, respectively. The Kelvin fundamental 



solutions * ( , )iju P Q  and * ( , )ijt P Q  for plane strain problems are given by 

*

, ,

1 1
( , ) (3 4 ) ln

8 (1 )
ij ij i ju P Q v r r

v r




 
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where μ and v are the shear modulus and the Poisson’s ratio, respectively. r is the 

distance between the source node and field node. ni and nj are the directional cosines 

of the normal n. 

Eq. (13) is discretized with ne expanding elements. The discretized BIE can be 

expressed as 

*

1 1

*

1 1

( ) ( ) ( , ) ( ) ( )

                   ( , ) ( ) ( )

e

e

e

e

n n
f

ij j j ij

e

n n
f

j ij

e

c P u P t u P Q N Q d Q

u t P Q N Q d Q
















 


 

 
  

 

 
  

 

  

  

            (16) 

where nα is the number of element nodes (including the source and virtual nodes). 

fN  is the fine shape function of the α
th

 node of expanding element. The system of 

linear algebraic equations can be expressed in matrix form as 

Hu Gt                             (17) 

where vectors u and t consist of all nodal displacement and traction. Matrix H 

contains integrals involving *

ijt , and matrix G contains integrals involving *

iju .  

*( , ) ( ) ( )
e

i f

ij jP Q N Q d Q


 H t                    (18) 

*( , ) ( ) ( )
e

i f

ij jP Q N Q d Q


 G u                    (19) 

There are n source nodes. Distinguishing the known and unknown boundary 

variables, Eq. (17) can be rewritten as 

s s

s s

s s v v s s v v

v v

v v

   
   
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u t
H H H H G G G G

u t

u t

         (20) 

where s
u , s

t  and s
u , s

t  are the known and unknown boundary variables at the 



source nodes, respectively. v
u , v

t  and v
u , v

t  represent the known and unknown 

boundary variables at the virtual nodes, respectively. 

The matrices H and G are no longer square matrix since the virtual nodes are not 

used as the source nodes. However, from Section 2.2, we can know that u
v
 and q

v
 are 

not truly independent variables. They are interpolated by raw shape functions of their 

connecting elements and can be expressed by the following form: 

=

=

v r s

v r s

u N u

q N q
                           (21) 

where N
r
 is the raw shape functions of the expanding element. Substituting Eq. (21) 

into Eq. (20) and rearranging Eq. (20) according to the boundary conditions, the final 

system of linear equations can be obtained. 

Ax f                              (22) 

where 

( )s v r s v r=     A H H N G G N                   (23) 

s

s
=
 
 
 

u
x

q
                             (24) 

s s v v s s v v=     f G q G q H u H u                   (25) 

Matrix A matrix is a square matrix of order n. x is the vector containing n boundary 

unknowns at the source nodes, only. f is the known vector on the right-hand side. 

From Eqs. (22)-(25), it can be seen that the size of the overall system of linear 

equations is just the same as that in the traditional discontinuous element 

implementation. The variables at the virtual nodes do not appear in the overall system 

of equations. 

3.2 Nearly singular integration scheme 

The boundary integrals in Eqs. (18) and (19) become nearly singular integrals 

when the source node P is close to but not on the element of integration. To provide a 

general approach, we proposed an integration scheme based on adaptive element 

subdivision method [13, 14]. In this scheme, we first calculate the length of 



integration element, l, and the distance between the source node and the center of 

element, d, in the global coordinate system. If l is smaller than d, this element is taken 

as a regular integration element, or it is divided into two equal sub-elements in local 

coordinate system as shown in Fig. 3. Then for each sub-element, we repeat the above 

procedure until all sub-elements become regular. Finally, Gaussian quadrature is used 

on all sub-elements. With the proposed method, the nearly singular integrals can be 

accurately evaluated even when the source node is very close to the integration 

element. 

 

Fig. 3. Subdivision of element in local coordinate system according to the position of source node 

P. 

4. Numerical examples 

To verify the accuracy and efficiency of expanding element interpolation method 

for thin-walled structures, four test examples are presented in this section, together 

with comparisons with exact solutions. For the purpose of error estimation and 

convergence studies, a relative errors e is defined as 

num exact 2

1max

1 1
( )

N

i i

i

e u u
u N 

                      (26) 

where |u|max is the maximum value over N sample points. num

iu  and exact

iu  stand for 

the numerical and exact solutions, respectively. 

In all following figures, n is the number of the source nodes. ‘ExpandConst’, 

‘ExpandLinear’, ‘ExpandQuad’, ‘DiscontConst’, ‘DiscontLinear’, ‘DiscontQuad’, 

‘ContinuLinear’ and ‘ContinuQuad’ denote the numerical results obtained by the 

expanding constant, linear, quadratic element interpolation methods, traditional 

discontinuous constant, linear, quadratic element interpolation methods, and 

traditional continuous linear, quadratic element interpolation methods, respectively. 



4.1 Example 1: displacement field problem on an ellipse 

A displacement field problem on an ellipse, centered at the origin is concerned in 

this example as shown in Fig. 4. The semi-major axis a is kept constant, while the 

semi-minor axis b varies from a to 10
-6

a. Plane strain cases with Young’s modulus E = 

1 (in consistent units) and Poisson’s ratio v = 0.25 are considered for various ratios b/a. 

A planar displacement profile is prescribed on the boundary as follows: 

3 2 3 23 ,   3x yu y yx u x xy                       (27) 

There are 120 source nodes used in all methods. The relative errors of tractions tx 

along the whole boundary by the expanding elements and traditional elements 

interpolation method are shown in Fig. 5. To study the convergence, different numbers 

of source nodes are used for b/a = 0.1 as shown in Fig. 6. 

 

Fig. 4. Displacement field problem on an ellipse. 

 

Fig. 5. Relative errors of tractions tx along the whole boundary for different ratios b/a. 



 

Fig. 6. Convergence rates of tx along the whole boundary for b/a = 0.1.  

From Fig. 5 and 6, it can be seen that the accuracy of expanding elements 

interpolation method remains very high even for the ratio b/a in the micro-scale and 

high convergence rates can be obtained. 

4.2 Example 2: displacement field problem on concentric circles 

When analyzing a thin coating on a shaft, the geometry model can be simplified 

into two concentric circles as shown in Fig. 7. The outer radii of two circles are r1 and 

r2, respectively. The thickness 2 1h r r   varies in the range of 10
-1

r1-10
-6

r1. Essential 

boundary conditions of Eq. (27) are prescribed on the all boundaries. Plane strain 

conditions with Young’s modulus E = 1 (in consistent units) and Poisson’s ratio v = 

0.25 are assumed. 60 source nodes are used on the inner circle and outer circle, 

respectively. The relative errors of ty along the inner circle by different methods are 

shown in Fig. 8 and the convergence rates of ty for the ratios h/r1 = 10
-6

 are shown in 

Fig. 9. 



 

Fig. 7. Displacement field problem on concentric circles. 

 

Fig. 8. Relative errors of ty along the inner circle for different ratios h/r1. 

 

Fig. 9. Convergence rates of ty along the inner circle for the ratios h/r1 = 10
-6

. 



Fig. 8 and 9 show that as the coating thickness decreases, the numerical results by 

traditional constant element interpolation method become wrong and are hard to 

approach to the exact solution even with many source nodes. While no loss in solution 

accuracy by the expanding constant element interpolation methods as the thickness 

gets smaller.  

4.3 Example 3: cantilever beam problem 

A cantilever beam problem is studied in this example as shown in Fig. 10. The 

exact solution is 

2( ) (6 3 ) (2 )( 2 )
6 2

x

P h
u y l x x v y hy

EI
                   (28) 

2 2 2 21 1 1
3 ( 2 )( ) (4 5 ) ( )3

6 2 4 3
y

P
u v y hy h l x v h x l x x

EI

 
        

 
    (29) 

where  

3

12

h
I                                (30) 

2

                 for plane stress
 

(1 )    for plane strain  

E
E

E v


 


                 (31) 

                 for plane stress
 

(1 )      for plane strain  

v
v

v v


 


                 (32) 

 The problem is solved for the plane strain case with P=1Pa, E=1.1×10
5
Pa, v=0.25, 

h=1 and l=100. Only one constant element is used on the edge BC in the proposed 

method and traditional method. Quadratic element is used on other edges. The 

numerical results of uy along the edge AB (from (0, 0) to (100, 0)), together with the 

exact solution are shown in Fig. 11. ‘ExpandQuad67’ and ‘ExpandQuad127’ stand for 

the numerical results by the proposed method with 67 nodes and 127 nodes, 

respectively. A convergence study of uy along the edge BC is carried out in Fig. 12. 



 

Fig. 10. Cantilever beam problem 

 

Fig. 11. uy along the edge AB (from (0, 0) to (100, 0)). 

 

Fig. 12. Convergence rates of uy along the edge BC. 



As shown in Fig. 11, when using only one constant element on the edge BC, the 

numerical results by the traditional element interpolation method are completely 

wrong even with many source nodes. While high accuracy can be obtained by the 

expanding element interpolation method. From Fig. 12, it can be seen that high 

convergence rates is obtained by the proposed method again. 

4.4 Example 4: structure with negative Poisson’s ratio 

Some structures exhibit a negative Poisson’s ratio effect under compression. In 

the last example, the structure with negative Poisson’s ratio is considered as shown in 

Fig. 13. Plane strain case with P = 1Mpa, E = 1000MPa, v = 0.25, h = 60, t = 2 and l = 

90 are assumed. The numerical results of uy along the top edge a, together with the 

results by the FEM are shown in Fig. 14. Quadratic elements are used in both methods. 

‘ExpandQuad684’ and ‘FEM1650’ denote the results by the proposed method with 

684 nodes and the FEM with 1650 nodes, respectively. The numerical results by the 

FEM with 3232854 nodes are used as reference solution. The von Mises stress by the 

proposed method with 1140 nodes and the FEM with 3232854 nodes are shown in Fig. 

15 and Fig. 16, respectively. 

 

Fig. 13. Structure with negative Poisson’s ratio. 



 

Fig. 14. uy along the top edge a. 

 

Fig. 15. Von Mises stress by the proposed method with 1140 nodes. 



 

Fig. 16. Von Mises stress by the FEM with 3232854 nodes. 

From Fig. 14, one can see that the numerical results of uy by both methods 

approach to the reference solution as the number of node increases, but the 

convergence rate by the proposed method are higher than that by the FEM. As shown 

in Fig. 15 and 16, high level of accuracy can be obtained by the proposed method with 

few nodes. 

5. Conclusions 

We have applied the expanding element interpolation method to analyze 

thin-walled structures in this paper. The expanding element inherits the advantages of 

both the continuous and discontinuous elements while overcomes their disadvantages. 

Both continuous and discontinuous fields on the domain boundary can be accurately 

approximated by the expanding element interpolation method. Because the virtual 

nodes are not used as the source nodes, the size of the overall system of linear 

equations is just the same as that in the traditional discontinuous element 

implementation. Numerical results have demonstrated that our method has high level 

of accuracy and is able to analyze very slender structures with the aspect ratio up to 

10
6
. Extension of this method for 3D cases is ongoing. 
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